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1. Introduction

Large amplitude static analysis of cantilever beams with a tip concentrated load, attempted by
several authors, are given in Refs. [1–3]. All these studies dealt with assuming infinitely large
support rotational stiffness, which in reality is not possible to achieve. For a realistic analysis the
rotational stiffness of the support has to be taken care of for both static and dynamic problems.
The linear theory of vibrations predicts the frequencies of natural vibration to be independent

of the amplitude of vibration. In many instances, if the amplitude of the vibration is large, then
the above statement is not justified due to the non-linear effects involved. Wagner [4] has obtained
approximate solutions for the free non-linear oscillations of an initially straight, uniform elastic
bar with clamped–free and free–free end conditions. The problem of large amplitude vibrations
has been presented for clamped–free and free–free uniform beams in Ref. [5]. Recently, a simple
relationship has been presented in Ref. [6] to determine the first mode linear natural frequency of
linearly tapered cantilever beam as a function of beam stiffness (small deformation theory), the
beam mass, and a mass distribution parameter. A preliminary investigation is successfully
presented in Ref. [7], to obtain the large amplitude free vibration characteristics for the first mode
of a uniform cantilever beam by replacing the linear stiffness of Ref. [6] by non-linear stiffness.
The purpose of the present paper is to provide the large amplitude fundamental frequency for a

spring-hinged uniform beam with a simple, already published [7] modification to the methodology
of Ref. [6]. The authors believe that the present study is the first of its kind in literature for
obtaining the large amplitude free vibration analyses (first mode) of spring-hinged uniform beams.
For this analysis, a polynomial function is derived taking the necessary boundary conditions at
the ends of spring-hinged beam. The non-linear static analysis results i.e., the load parameter and
the amplitude are compared with those of Ref. [8] for the spring-hinged beam with tip
concentrated load, where an elliptical integral approach is used. Based on the results of the load
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deflection data, the fundamental frequency is calculated using the simple relation of Ref. [6]
modified for large amplitudes, for a range of spring stiffnesses and tip slopes. As a special case, the
ratio of the non-linear (large amplitude) period to the linear period ðTNL=TLÞ versus amplitude
ða=LÞ for a cantilever beam (spring-hinged considering infinite support rotational stiffness) has
been found out using the present polynomial function. The present results when compared with
those of Wagner [4] and Rao and Rao [5], indicate the efficacy of the proposed simple method.

2. Large deflection analysis of a uniform spring-hinged cantilever beam under tip concentrated load

The governing differential equation of a spring-hinged beam with a tip concentrated load
(Fig. 1), in the non-dimensional form is

d2y

dx2
þ l cos y ¼ 0 ð1Þ

with the boundary conditions

dy
dx

¼ 0 at x ¼ 0; ð2aÞ

y ¼ a at x ¼ 0; ð2bÞ

dy
dx

þ gy ¼ 0 at x ¼ 1; ð2cÞ

where the loading parameter l ¼ PL2=EI ; P is the vertical tip concentrated load; g ð¼ KL=EIÞ is
the rotational spring stiffness parameter; x ð¼ s=LÞ is the non-dimensional co-ordinate; a is the tip
slope; K is the rotational spring stiffness; y is the slope of the elastica at any x; L is the length of
the beam; E is Young’s modulus; and I is the area moment of inertia.
It may be noted here that g ¼ 0 represents a hinged-free beam and g-N represents a cantilever

beam. The present formulation with g ¼ 0 is not applicable as this beam contains a rotational
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Fig. 1. A uniform spring-hinged cantilever beam undergoing large amplitudes.
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rigid-body mode and the first elastic mode is not similar to the first mode obtained for any
non-zero value of g:
Applying the first two boundary conditions represented by Eqs. (2a) and (2b) into Eq. (1), the

following expressions y and dy=dx can be generated in a three terms polynomial (truncated) form
of the variable x ð0pxX1Þ; using the symbolic algebraic computational software MAPLE [9], as

dy
dx

¼ �xl cos a� 1
6
x3l2 sin a cos aþ x5 �1

120
l3 sin2 a cos aþ 1

40
l3 cos3 a

� �
; ð3Þ

y ¼ a� x2
l
2
cos a�

l2

24
x4 sin a cos a: ð4Þ

Even though the three terms presented in the series for y; dy=dx are exact, the final expression for
the same are approximate to the extent of the neglected high-power terms of x; whose coefficients
are found to be very small.
Applying the third boundary condition represented by Eq. (2c), on Eqs. (3) and (4), we get

fða; l; gÞ ¼ � l cos a�
l2

6
sin a cos a�

l3

120
sin2 a cos aþ

l3

40
cos3 a

þ g a�
l cos a

2
�

l2 sin a cos a
24

� �
¼ 0: ð5Þ

When the rotational spring stiffness parameter is very high ðg-NÞ; Eq. (5) becomes

fða; l; gÞ ¼ 1�
2a

l cos a
þ

l sin a
12

¼ 0: ð6Þ

Eq. (5) is a cubic equation in l; and it gives three roots in l: Similarly Eq. (6) is a quadratic
equation and has two roots. The lowest real root of l is real. The other roots are, in general,
complex or not physically feasible. Hence, the lowest root, which is a usable physical solution, is
used in the subsequent computations.
The amplitude of the beam can be generated taking real value of l from Eqs. (5) and (6), as the

case may be, from the relation

a=L ¼
Z 1

0

sinðyÞ dx; ð7Þ

where, a is the tip deflection. Here, the first two terms of y are used in Eq. (7) to find out the
amplitude.

3. Fundamental frequency of a spring-hinged uniform cantilever beam

3.1. Linear frequency equation

The fundamental frequency equation of a cantilever beam can be represented as [6]

fL ¼ C

ffiffiffiffiffiffi
S

M

r
; ð8Þ

ARTICLE IN PRESS

C. Pany, G.V. Rao / Journal of Sound and Vibration 271 (2004) 1163–1169 1165



where fL is the linear fundamental frequency in Hz, S is the linear stiffness of the beam ðP=aÞ in
(N/m), M is the mass of the beam in kg; C is the mass distribution parameter, and for a uniform
cantilever beam, C ¼ 0:323316; is a standard value found in the text books and also quoted in Ref. [6].

3.2. Large amplitude frequency relation

If the cantilever beam is undergoing large amplitude vibrations, the non-linear fundamental
frequency can be approximately calculated by using the non-linear stiffness [7] in the place of the
linear stiffness in Eq. (8), as

fNL ¼ C

ffiffiffiffiffiffiffiffi
SNL

M

r
; ð9Þ

where SNL is the non-linear stiffness, the calculation of which is explained in the next section.

4. Results and discussions

4.1. Determination of load parameter ðlÞ and amplitude using present polynomial approximation

The approximate non-linear solution for the large deflection of a cantilever beam and spring-
hinged beam of length L and with a vertical tip load P are presented explicitly in Eqs. (5)–(7).
Eq. (5) is used for the determination of the load parameter ðlÞ for a spring-hinged cantilever beam
for a given value of tip slope ðaÞ and rotational spring stiffness parameter ðgÞ: The lowest real root
of l; is used for the analysis. Eq. (6) has been used to get the load parameter ðlÞ for a cantilever
beam. And Eq. (7) is used for the determination of amplitude ða=LÞ: This equation depends on the
tip slope ðaÞ and the load parameter ðlÞ: The load parameter obtained from Eqs. (5) and (6) has
been utilized to get corresponding amplitude of a spring-hinged and cantilever beams. Here, the
MAPLE [9] software is taken as a computational tool for the determination of the load parameter
and the amplitude.
To validate the present polynomial approach, initially Eqs. (6) and (7) are employed to derive

the load parameter and the amplitude of a cantilever beam for a range of tip slopes ðaÞ: The
present results are compared reasonably good accuracy with those of Bisshopp [1] and Rao and
Rao [5]. This validates the proposed polynomial approximation. Now, Eqs. (5) and (7) are used to
obtain the load parameter and the corresponding amplitude of a spring-hinged cantilever beam
with a finite spring stiffness parameter and tip slope values. The results (Table 1) are compared
with Rao et al. [8]. The comparison shows that the difference of present results with that of
Ref. [8] is very small (within 4%) in the lower range of tip slopes (a ¼ 10–60�). And the difference
is 5.66% and 7.61% at the tip slopes of 70� and 80�; respectively. The difference of present results
with those of Ref. [8] is due to the different methods of analysis of the problem considered.

4.2. Determination of non-linear fundamental frequencies

A uniform spring-hinged cantilever beam (Fig. 1), made of steel having a cross-section of
2:54 cm wide by 0:099 cm deep with a length ðLÞ of 0:693166 m has been considered [10]. The
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flexural stiffness ðEIÞ of the beam and mass per unit length ð %mÞ are 0:4107599 N m2 and
0:196138 kg=m; respectively.
Using the present polynomial approximations the large amplitude fundamental frequency of a

cantilever beam has been obtained taking very high spring stiffness parameter ðg-NÞ; using the
mass distribution parameter ðCÞ in the computation. First, using Eqs. (6) and (7), the tip load ðPÞ
and the tip amplitude ða=LÞ are calculated for a given end slope of the cantilever beam. And the
corresponding non-linear stiffness ðP=aÞ is determined. Using Eq. (9) the first mode non-linear
frequency ðfNLÞ is computed for various end slopes. The fundamental frequencies parameter
O ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%m=ðEIÞ

p
oL2 (where %m is the mass per unit length; o is the radian frequency given by 2pfNL)

are compared with those of [5,7]. The ratio of the non-linear (large amplitude) period to the linear
period ðTNL=TLÞ versus amplitude ða=LÞ for a cantilever beam has been found out using the
present polynomial function. The results are shown in Fig. 2. The present results are compared
with those of Wagner [4], Rao and Rao [5] and Pany and Rao [7]. The comparison shows that the
present (polynomial approach) results are closer to those of Wagner [4] and Pany and Rao [7] than
Rao and Rao [5].
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Table 1

Comparison of load parameter ðlÞ and amplitude ða=LÞ for a spring-hinged cantilever beam for a range of spring

constant parameter and tip slope

a (deg) g l a=L

Present Ref. [8] % Diff. Present Ref. [8] % Diff.

20 2.0169 0.3677 0.3680 0.0815 0.2869 0.2866 0.1045

30 4.0972 0.7813 0.7834 0.2687 0.3974 0.3952 0.5535

40 6.2982 1.2801 1.2878 0.6015 0.5044 0.4975 1.3679

50 8.7099 1.9325 1.9504 0.9262 0.6075 0.5925 2.4691

60 11.498 2.8800 2.9081 0.9756 0.7065 0.6788 3.9207

70 15.038 4.4924 4.4960 0.0801 0.8017 0.7563 5.6629

80 20.536 8.2336 7.9185 3.827 0.8957 0.8275 7.6141
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T N
L/

 T
L

a / L

Fig. 2. The ratio of the non-linear period to the linear period ðTNL=TLÞ versus amplitude ða=LÞ for a uniform cantilever

beam +++, values are of Ref. [7] using Bisshopp [1] large amplitude data; —, present polynomial function; OOO,

Rao and Rao [5]; —�—, Wagner [4].
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Finally, the fundamental frequencies of a spring-hinged cantilever beam for a range of tip
slopes and spring stiffness parameters are presented using the same procedure as explained above
(i.e., using the mass distribution parameter) in Table 2. Here, the non-linear frequencies have been
obtained from the load amplitude data obtained from the present polynomial approach and that
of Ref. [8]. The results agree well, within 2% difference, with those of Ref. [8]. It is observed that
the non-linear fundamental frequency parameter ðOÞ increases with tip slope ðaÞ or amplitude
ða=LÞ; which implies that the first mode of vibration of a uniform cantilever beam is having a
hardening type of non-linearity.

5. Concluding remarks

In this paper a polynomial function has been derived to get the large deflection data for a
uniform cantilever and a spring-hinged cantilever beam with a tip concentrated load. The large
amplitude fundamental frequency is obtained for a uniform spring-hinged cantilever beam, based
on the above data, using a very simple approach. The present approach gives accurate results, for
all practical purposes, with much less computational effort when compared to the other methods
[4,5]. The authors believe that the non-linear fundamental frequency of a spring-hinged cantilever
beam is presented for the first time in this paper.
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